3.513 \(\int \frac{1}{(1+x)^{3/2} (1-x+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac{2 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}+\frac{2 x}{3 \sqrt{x+1} \sqrt{x^2-x+1}} \]

[Out]

(2*x)/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2]) + (2*Sqrt[2 + Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x
)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt
[3] + x)^2]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0330799, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {713, 199, 218} \[ \frac{2 x}{3 \sqrt{x+1} \sqrt{x^2-x+1}}+\frac{2 \sqrt{2+\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Int[1/((1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

(2*x)/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2]) + (2*Sqrt[2 + Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x
)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt
[3] + x)^2]*Sqrt[1 - x + x^2])

Rule 713

Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((d + e*x)^FracPart[p
]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(d + e*x)^(m - p)*(a*d + c*e*x^3)^p, x], x]
/; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0] && IGtQ[m - p + 1, 0] &&  !Intege
rQ[p]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{1}{(1+x)^{3/2} \left (1-x+x^2\right )^{3/2}} \, dx &=\frac{\sqrt{1+x^3} \int \frac{1}{\left (1+x^3\right )^{3/2}} \, dx}{\sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2 x}{3 \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{\sqrt{1+x^3} \int \frac{1}{\sqrt{1+x^3}} \, dx}{3 \sqrt{1+x} \sqrt{1-x+x^2}}\\ &=\frac{2 x}{3 \sqrt{1+x} \sqrt{1-x+x^2}}+\frac{2 \sqrt{2+\sqrt{3}} \sqrt{1+x} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1-x+x^2}}\\ \end{align*}

Mathematica [C]  time = 0.372938, size = 216, normalized size = 1.58 \[ \sqrt{(x+1)^2-3 (x+1)+3} \left (\frac{2 (x+1)^{3/2}}{9 \left ((x+1)^2-3 (x+1)+3\right )}-\frac{2}{9 \sqrt{x+1}}\right )+\frac{i \sqrt{\frac{2}{3}} (x+1) \sqrt{1-\frac{6}{\left (3-i \sqrt{3}\right ) (x+1)}} \sqrt{1-\frac{6}{\left (3+i \sqrt{3}\right ) (x+1)}} \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6}{3-i \sqrt{3}}}}{\sqrt{x+1}}\right ),\frac{3-i \sqrt{3}}{3+i \sqrt{3}}\right )}{3 \sqrt{-\frac{1}{3-i \sqrt{3}}} \sqrt{(x+1)^2-3 (x+1)+3}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

Sqrt[3 - 3*(1 + x) + (1 + x)^2]*(-2/(9*Sqrt[1 + x]) + (2*(1 + x)^(3/2))/(9*(3 - 3*(1 + x) + (1 + x)^2))) + ((I
/3)*Sqrt[2/3]*(1 + x)*Sqrt[1 - 6/((3 - I*Sqrt[3])*(1 + x))]*Sqrt[1 - 6/((3 + I*Sqrt[3])*(1 + x))]*EllipticF[I*
ArcSinh[Sqrt[-6/(3 - I*Sqrt[3])]/Sqrt[1 + x]], (3 - I*Sqrt[3])/(3 + I*Sqrt[3])])/(Sqrt[-(3 - I*Sqrt[3])^(-1)]*
Sqrt[3 - 3*(1 + x) + (1 + x)^2])

________________________________________________________________________________________

Maple [B]  time = 1.325, size = 247, normalized size = 1.8 \begin{align*} -{\frac{1}{3\,{x}^{3}+3}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( i\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) \sqrt{3}-3\,\sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{2\,x-1+i\sqrt{3}}{i\sqrt{3}-3}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{i\sqrt{3}-3}}},\sqrt{-{\frac{i\sqrt{3}-3}{i\sqrt{3}+3}}} \right ) -2\,x \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1+x)^(3/2)/(x^2-x+1)^(3/2),x)

[Out]

-1/3*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(I*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2
*x-1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(
1/2))*3^(1/2)-3*(-2*(1+x)/(I*3^(1/2)-3))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((2*x-1+I*3^(1/2))/(I*3
^(1/2)-3))^(1/2)*EllipticF((-2*(1+x)/(I*3^(1/2)-3))^(1/2),(-(I*3^(1/2)-3)/(I*3^(1/2)+3))^(1/2))-2*x)/(x^3+1)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{2} - x + 1} \sqrt{x + 1}}{x^{6} + 2 \, x^{3} + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^2 - x + 1)*sqrt(x + 1)/(x^6 + 2*x^3 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

Integral(1/((x + 1)**(3/2)*(x**2 - x + 1)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)), x)